Attribution: Please use this identifier to share, cite, or link to this item:
Title: Specialized Review Selection for Feature Rating Estimation
Authors: Long, Chong
Zhang, Lei
Huang, Minlie
Zhu, Xiaoyan
Li, Ming
Date: Sep-2009
Publisher: IEEE
Citation: Long, C., Zhang, L., Huang, M., Zhu, X., & Li, M. (2009). Specialized Review Selection for Feature Rating Estimation. Proceedings of the 2009 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology – Workshops. (p.214-221). IEEE. doi:10.1109/WI-IAT.2009.38
Abstract: On participatory Websites, users provide opinions about products, with both overall ratings and textual reviews. In this paper, we propose an approach to accurately estimate feature ratings of the products. This approach selects user reviews that extensively discuss specific features of the products (called specialized reviews), using information distance of reviews on the features. Experiments on real data show that overall ratings of the specialized reviews can be used to represent their feature ratings. The average of these overall ratings can be used by recommender systems to provide feature specific recommendations that better help users make purchasing decisions.
Description: 2009 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops
ISBN: 978-0-7695-3801-3
Project Number: 104519
Project Title: International Research Chairs Initiative (IRCI)
Access: IDRC Only
Copyright: IEEE
Access Restriction: Due to copyright restrictions the full text of this research output is not available in the IDRC Digital Library or by request from the IDRC Library. / Compte tenu des restrictions relatives au droit d`auteur, le texte intégral de cet extrant de recherche n`est pas accessible dans la Bibliothèque numérique du CRDI, et il n`est pas possible d`en faire la demande à la Bibliothèque du CRDI.
Files in This Item:
There are no files associated with this item.
Show full item record